
VII. ORTHOGONAL DECOMPOSITION

OF L2(R) INDUCED BY MRA

In this chapter and next, we will look into a general Multiresolution Analysis

and discuss some of its important properties. First let us recall the definition of a

Multiresolution Analysis.

Definition 1. For any n ∈ Z, let Vn be a subspace of L2(R). Suppose {Vn}n∈Z
satisfies the following conditions:

(a)For any n ∈ Z, Vn ⊂ Vn+1;

(b)For any n ∈ Z, f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1;

(c)∪n∈ZVn = L2(R);

(d)∩n∈ZVn = {0};
(e)There exists ϕ(x) ∈ V0 such that {ϕ(x− l)|l ∈ Z} is a complete orthonormal

system of V0.

Then {Vn}n∈Z is called a Multiresolution Analysis.

The function ϕ(x) ∈ V0 is called a scalling function for the Multiresolution

Analysis {Vn}n∈Z. Just as in the specific case of Haar Multiresolution analysis,

the orthogonal complement of V0 in V1 is well defined, we call it W0. Namely,

W0 = V1 ª V0. Equivalently, V1 = V0 ⊕ W0. In general, since for any n ∈ Z, we

have Vn ⊂ Vn+1, the orthogonal complement of Vn in Vn+1 is well defined and we

call it Wn. Namely, Wn = Vn+1 ª Vn. Equivalently, Vn+1 = Vn ⊕Wn.

First let us note that most of the general discussions in Chapter 6 applies in

this general situation. In particular, we can transplant Lemma 3 of Chapter 6 to

this general situation. The original proof applies in this general situation so it is

omitted.

Lemma 1. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn for

each n ∈ Z. Then for any n ∈ Z,

f(x) ∈ Wn ⇐⇒ f(2x) ∈ Wn+1.

We also quote Lemma 4 of Chapter 6 below verbatum.
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Lemma 2. Let K1 and K2 be subspaces of L2(R). If f(x) ∈ K1 ⇐⇒ f(2x) ∈ K2,

then the following are equivalent:

(a) {fn(x)}n∈Z is a complete orthonormal system of K1.

(b){√2fn(2x)}n∈Z is a complete orthonormal system of K2.

Now, if for a general Multiresolution Analysis, we can find a complete orthonor-

mal system of W0, as we have done in Chapter 6 for the Haar multiresolution case,

then we can decompose and reconstruct functions in L2(R) in the same fashion as

we have done with the aid of Haar multiresolution analysis. In particular, Theorem

1 of Chaper 6 is still valid in principal.

Theorem 1. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn

for each n ∈ Z. Let ϕ be the scaling function of {Vn}n∈Z and ψ be a function

in W0 such that {ψ(x − l)|l ∈ Z} is a complete orthonormal system of W0. Let

ψj,l(x) = 2
j
2 ψ(2jx− l) and ϕj,l(x) = 2

j
2 ϕ(2jx− l) for each j, l ∈ Z. Then for any

h ∈ L2(R) and for each j ∈ Z,

PVj+1h = PVj h + PWj h.

Specifically,

∑

l∈Z
〈h, ϕj+1,l〉ϕj+1,l =

∑

l∈Z
〈h, ϕj,l〉ϕj,l +

∑

l∈Z
〈h, ψj,l〉ψj,l.

In the next Chapter, we will be able to show that for a general Multiresolution

Analysis, we can indeed find a complete orthonormal system of W0. Thus, once we

have a Multiresolution analysis, we will always be able to do decomposition and

reconstruction of functions in L2(R), in a similar way to the Haar case. The specific

formulas of decomposition and reconstruction will be different for each individual

multiresolution analysis. It depends on the specific relation between the scaling

function ϕ and the function ψ ∈ W0.

There is another generalization we want to make in this Chapter. Recall that

the Haar function H(x) has been proved to be an orthogonal wavelet in Chapter

4, it is also proved the {H(x − l)|l ∈ Z} is a complete orthonormal system of

W0 of Haar multiresolution analysis. In the rest of this chapter, we want to show

that for a general multiresolution analysis, if ψ ∈ L2(R) is such a function that

{ψ(x− l)|l ∈ Z} is a complete orthonormal system of W0 induced by that general

multiresolution analysis, then ψ is a wavelet in nL2(R) .

We will do this through proving a decomposition Theorem below.
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Theorem 2. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn for

each n ∈ Z. Then for any f ∈ L2(R), there is a unique sequence of functions

{fk}k∈Z such that fk ∈ Wk for each k ∈ Z, fk’s are mutually orthogonal,

f = lim
m,n→+∞

k=n∑

k=−m

fk

where the convergence is in L2(R) norm and

||f ||22 = lim
m,n→+∞

k=n∑

k=−m

||fk||2.

Remark Without causing any confusion, we can also write

f = lim
m,n→+∞

k=n∑

k=−m

fk

in the above theorem as f =
∑

k∈Z fk with the understanding that the convergence

is in L2(R) norm and write

||f ||22 = lim
m,n→+∞

k=n∑

k=−m

||fk||2

as ||f ||22 =
∑

k∈Z ||fk||2. We delay the proof of Theorem 2 and first see one of its

implications.

Theorem 3. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn for

each n ∈ Z. Let ψ ∈ L2(R) be such a function that {ψ(x − l)|l ∈ Z} is a complete

orthonormal system of W0. Then ψ is a orthogonal wavelet in L2(R).

Proof. Note that according to Lemma 1, in the case of a general multiresolution

analysis, for any n ∈ Z,

f(x) ∈ Wn ⇐⇒ f(2x) ∈ Wn+1.

Since ψ ∈ L2(R) is a function that {ψ(x − l)|l ∈ Z} is a complete orthonormal

system of W0, by applying Lemma 2, we see that {2 k
2 ψ(2kx−l)|l ∈ Z} is a complete

orthonormal system of Wk for each k ∈ Z. So for any function fk ∈ Wk, by Lemma

4 of Chapter 1, we have

||fk||22 =
∑

l∈Z
|〈fk, 2

k
2 ψ(2kx− l)〉|2.
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Thus for any f ∈ L2(R), according to Theorem 3, we have

||f ||22 =
∑

k∈Z
||fk||2 =

∑

k∈Z

∑

l∈Z
|〈fk, 2

k
2 ψ(2kx− l)〉|2.

Since according to Theorem 3, f =
∑

n∈Z fn with fn ∈ Wn and Wn’s are mutu-

ally orthogonal. So for any fixed k ∈ Z, because 2
k
2 ψ(2kx − l) ∈ Wk for all l ∈ Z,

so for all l ∈ Z, 2
k
2 ψ(2kx− l) is orthogonal to each Wn with n 6= k. Thus

〈f, 2
k
2 ψ(2kx− l)〉 = 〈

∑

n∈Z
fn, 2

k
2 ψ(2kx− l)〉 = 〈fk, 2

k
2 ψ(2kx− l)〉

for all l ∈ Z. Thus

||f ||22 =
∑

k∈Z

∑

l∈Z
|〈fk, 2

k
2 ψ(2kx− l)〉|2 =

∑

k∈Z

∑

l∈Z
|〈f, 2

k
2 ψ(2kx− l)〉|2.

Again by Lemma 4 of Chapter 1, {2 k
2 ψ(2kx−l)|k, l ∈ Z} is an complete orthonormal

system of L2(R), thus ψ is an orthogonal wavelet in L2(R) by definition. ¤

Lastly, let us prove Theorem 2 through several steps. First we consider the

orthogonal decomposition of V0.

Lemma 3. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn for

each n ∈ Z. Then for any f ∈ V0, there is a unique sequence of functions {f−k}k∈N
such that f−k ∈ W−k for each k ∈ N, f−k’s are mutually orthogonal,

f = lim
n→+∞

k=n∑

k=1

f−k

where the convergence is in L2(R) norm.

Proof. We first prove the existence of such f−k’s. To this end, we let f−k = PW−k
f

for all k ∈ N and let gn = f −∑n
k=1 f−k for each n ∈ N. We are going to prove the

sequence {gn}∞n=1 converges to 0 under the L2(R) norm.

First, we are going to prove that {gn}∞n=1 is convergent. To reach this goal,

we only need to prove that {gn}∞n=1 is a Cauchy sequence in L2(R). Note that∑n
k=1 f−k ∈ W−1⊕W−2⊕ ...⊕W−n, and gn ∈ V−n, so they are orthogonal to each

other, hence by

||f ||22 = ||gn +
n∑

k=1

f−k||22 = ||gn||22 + ||
n∑

k=1

f−k||22 ≥ ||
n∑

k=1

f−k||22 =
n∑

k=1

||f−k||22.
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Namely
n∑

k=1

||f−k||22 ≤ ||f ||22

holds for any n ∈ N. This means that

∞∑

k=1

||f−k||22 ≤ ∞.

So for any ε > 0, there exists N ∈ N, such that for any m > n > N , we have

m∑

k=n+1

||f−k||22 ≤ ε2.

namely,

||gm − gn||22 = ||
m∑

k=n+1

f−k||22 =
m∑

k=n+1

||f−k||22 ≤ ε2.

This means {gn}∞n=1 is a Cauchy sequence in L2(R) and thus converges to some g ∈
L2(R). In view of gn = f −∑n

k=1 f−k, we conclude that
∑n

k=1 f−k also converges,

and we denote

g = f −
∞∑

k=1

f−k.

Now we are going to prove that g = 0. Indeed, since for any N ≥ 1, the sequence

{gn}∞n=N ⊂ V−N and {gn}∞n=N also converges in L2(R) norm to g, so g ∈ VN . Hence

g ∈
∞⋂

N=1

V−N =
−∞⋂

n=−1

Vn =
⋂

n∈Z
Vn = {0}

Thus g = 0 and we get

f = lim
n→+∞

k=n∑

k=1

f−k =
∑

k∈N
f−k

where the convergence is in L2(R) norm.

Lastly, the uniqueness part of the proof is left to the reader. ¤

Next we consider the orthogonal decomposition of L2(R)ª V0.

Lemma 4. Let {Vn}n∈Z be a Multiresolution Analysis and Wn = Vn+1 ª Vn for

each n ∈ Z. Then for any f ∈ L2(R)ª V0, there is a unique sequence of functions

{fk}∞k=0 such that fk ∈ Wk for each k ∈ N ∪ {0}, fk’s are mutually orthogonal,

f = lim
n→+∞

k=n∑

k=0

fk
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where the convergence is in L2(R) norm.

Proof. First we prove the existence of such fk’s. To this end , let fk = PWk
f for

all k ∈ N ∪ {0}. Since
∞⋂

n=1

Vn = L2(R)

and Vn ⊂ Vn+1 for any n ∈ Z, hence for any f ∈ L2(R) ª V0 ⊂ L2(R), and any

ε > 0, there is an natural number N ∈ N and a function gN ∈ VN such that

||f − gN ||2 < ε.

For this fixed N , since

PVN
f =

N−1∑

k=0

fk ∈ VN ,

according to the properties of orthogonal projection, we have

||f −
N−1∑

k=0

fk||2 = ||f − PVN
f ||2 ≤ ||f − gN ||2 < ε.

Now for any integer n > N − 1, since f − ∑n
k=0 fk ∈ L2(R) ª Vn+1, while∑n

k=N fk ∈ Vn+1, so functions f −∑n
k=0 fk and

∑n
k=N fk are orthogonal to each

other, hence by P theorem,

||
N−1∑

k=0

fk||22 = ||f −
n∑

k=0

fk +
n∑

k=N

fk||22 = ||f −
n∑

k=0

fk||22 + ||
n∑

k=N

fk||22

So for the above ε > 0, and above fixed N , and any integer n > N − 1, we see

that

||f −
n∑

k=0

fk||2 ≤ ||f −
N−1∑

k=0

fk||2 < ε

which means f =
∑∞

k=0 fk.

The uniqueness part is left to the reader. ¤

Now we are ready to prove Theorem 2.

Proof of Theorem 2. First we want to prove that for any ε > 0, there are natural

numbers M, N , such that for all integers n > N and m > M , we have

||f −
m∑

k=−n

fk||2 < ε.

Since for any f ∈ L2(R), there is a unique g ∈ V0 and a unique h ∈ L2(R)ªV0 such

that f = g + h and f ⊥ h. Now we can apply Lemma 3 and Lemma 4 to functions

g and h respectively to get the result.
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Secondly, we want to prove that ||f ||22 = limm,n→+∞
∑k=n

k=−m ||fk||2. This is the

consequence of what we have already proved and the following lemma. The details

of the application is left to the reader. ¤

Lemma 5. Suppose that H is a Hilbert space, f ∈ H, {fk}∞k=1 ⊂ H. If fk’s are

mutually orthogonal and
∑∞

k=1 fk = f , then
∑∞

k=1 ||fk||2 = ||f ||2.

Proof. We want to prove that for any ε > 0, there is a natural number N such that

for any integer n > N , we have
∣∣||f ||2 −∑n

k=1 ||fk||2
∣∣ < ε.

Let us assume for the moment that f 6= 0. For any ε > 0, we take ε1 =

min{ ε
3||f || , ||f ||}, thus ε1 > 0. Since

∑∞
k=1 fk = f , so there is an natural number

N , such that for any integer n > N , we have

∣∣||f || − ||
n∑

k=1

fk||
∣∣ < ||f −

n∑

k=1

fk||ε1 ≤ ||f ||

hence

||
n∑

k=1

fk|| ≤
∣∣||f || − ||

n∑

k=1

fk||
∣∣ + ||f || ≤ 2||f ||.

Therefore, for any integer n > N ,

∣∣||f ||2 −
n∑

k=1

||fk||2
∣∣ =

∣∣||f ||2 − ||
n∑

k=1

fk||2
∣∣ =

∣∣||f || − ||
n∑

k=1

fk||
∣∣ · (||f ||+ ||

n∑

k=1

fk||
)

< ε1 · 3||f || ≤ ε

3||f || · 3||f || = ε.

The case when f = 0 is left to the reader. ¤


